A modified least-squares regression approach to the estimation of risk difference.

نویسنده

  • Yin Bun Cheung
چکیده

Risk ratio and risk difference are parameters of interest in many medical studies. The risk ratio has a property that the value for the outcome Y = 0 is not the inverse of the risk ratio for the outcome Y = 1. This property makes risk ratios inappropriate in some situations. Estimation of risk difference often encounters the problem that the binomial regression model fails to converge. Recently discussed alternatives may have the same problem of nonconvergence or are difficult to implement. Here the author proposes a modified least-squares regression approach--unweighted least-squares regression with a Huber-White robust standard error--for estimation of risk differences. Four versions of the robust standard error are considered. The binomial, ordinary least-squares, and modified least-squares estimators are compared analytically in a simple situation of one exposure variable. Multivariable regression analyses are simulated to demonstrate the usefulness of the approach. For sample sizes of approximately 200 or less, a small-sample version of the robust standard error is recommended. The method is illustrated with data from a patient survey in which the binomial regression fails to converge in the analyses of four out of five outcome variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

The analysis of residuals variation and outliers to obtain robust response surface

In this paper, the main idea is to compute the robust regression model, derived by experimentation, in order to achieve a model with minimum effects of outliers and fixed variation among different experimental runs. Both outliers and nonequality of residual variation can affect the response surface parameter estimation. The common way to estimate the regression model coefficients is the ordinar...

متن کامل

Fuzzy Hybrid least-Squares Regression Approach to Estimating the amount of Extra Cellular Recombinant Protein A from Escherichia coli BL21

Introduction: Immune Protein A is a component with a vast spectrum of biochemical, biological and medical usages. The coding gene of this protein was extracted from Staphylococcus aureus and was cloned and expressed in Escherichia coli bacteria. Suitable statistical methods are utilized to optimize expression conditions  for evaluating experiment accuracy , guarantee the accuracy of subsequent ...

متن کامل

Modified Weighted Least Squares Method to Improve Active Distribution System State Estimation

The development of communications and telecommunications infrastructure, followed by the extension of a new generation of smart distribution grids, has brought real-time control of distribution systems to electrical industry professionals’ attention. Also, the increasing use of distributed generation (DG) resources and the need for participation in the system voltage control, which is possible ...

متن کامل

A Least Squares Approach to Estimating the Average Reservoir Pressure

Least squares method (LSM) is an accurate and rapid method for solving some analytical and numerical problems. This method can be used to estimate the average reservoir pressure in well test analysis. In fact, it may be employed to estimate parameters such as permeability (k) and pore volume (Vp). Regarding this point, buildup, drawdown, late transient test data, modified Muskat method, interfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of epidemiology

دوره 166 11  شماره 

صفحات  -

تاریخ انتشار 2007